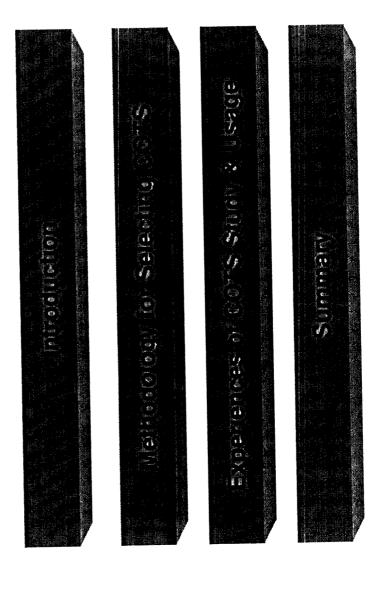

# **Electronic Components for the Commercialization of** Military and Space Systems 1998 International Workshop

Commercial Off-The-Shelf (COTS)

Methodology and Experiences for Selecting






Mike Sandor & Shri Agarwal 4800 Oaks Grove Dr. Pasadena, Ca 91109

Phone: (81 8) 354-0681 Fax: (818) 393-4559





# Agenda







# Objectives (*guided rules*) for Our Methodology for Selection of COTS in SPACE

- 1. Detection, recognition, and elimination of potentially critical part problems that could lead to catastrophic mission failure.
- 2. Perform risk assessment and risk mitigation for those parts that may seriously limit or compromise mission objectives.
- 3. Establish parts criteria that systematically generates data and requires critical decision making even when **data/information** gaps occur.



# Prior JPL Methodology for Selection-of-Parts was Founded on These Steps:

- 1 Vendor On-Site Team Surveys
- 2 Part Construction Analysis
- 3 In-House Evaluations
- 4 Extensive Controls /Gates
- 5 Extensive Reporting and Management Reviews
- 6 Destructive Physical Analysis
- 7 Failure Analysis When Needed
- 8 Extensive Data Reviews
- 9 Modeling for Failure Modes
- 10 Use of Rad Hard Foundaries



# JPL COTS Methodology is Governed by Applying Continuous Incremental Decision Making:

- Define Tailored parts Program with Cost
- Define Appropriate Parts Criteria List
- Define What Data/Information is Needed for Each Criteria
- Evaluate Available Data/Information For All Criteria
- perform Risk Assessment/Mitigation As Necessary
- Assign an Appropriate Risk Level for Each Criteria That Satisfies Mission Requirements

### Parts Criteria Derived for COTS Methodology

| List of criteria used for COTS    | Current Status                      | <b>Evaluation</b> |
|-----------------------------------|-------------------------------------|-------------------|
| 1. Vendor                         | Information Complete                | Accept            |
| 2. Part                           | Information Complete                | Accept            |
| 3. Wafer Fab Technology (Process) | <b>Partial Information Received</b> | Accept            |
| 4. Design                         | No Information Available            | Unknown           |
| 5. Reliability Assurance          | Dynamic Life Failures               | Warning           |
| 6. Quality Assurance              | No Information Available            | Unknown           |
| 7. Testing                        | No Information Available            | Unknown           |
| 8. Screening                      | No Information Available            | Unknown           |
| 9. Performance                    | <b>Partial Information Received</b> | Accept            |
| 10. Package                       | <b>Moisture Sensitive</b>           | Warning           |
| 11. Radiation                     | <b>Partial Information Received</b> | Unknown           |
| 12. Known Good Die                | N/A                                 | N/A               |
| 13. JPL Chip Overview             | Information Complete                | Accept            |
| 14. JPL DPA (Package)             | Information Complete                | Accept            |
| 15. JPL DPA (Die Cross Section)   | Information Complete                | Acce t            |
| 7a. JPL Testing/Burn-In           | Dynamic Burn-In Failure             | t i -             |



### Data Acquired for COTS Reliability Criteria

(Data example is specific for part type and/or technology)

| Reliability                               | Received | Unknown | Low                                                       | High                               | Waived                   | Accept                 |
|-------------------------------------------|----------|---------|-----------------------------------------------------------|------------------------------------|--------------------------|------------------------|
| 168 hr Infant Mortality                   | X        |         |                                                           |                                    |                          | <b>Accept</b> (0/2000) |
| 1000 hr Dynamic Lifetest                  | X        |         |                                                           | Burn-In<br>Recommened<br>(2 rejs.) |                          |                        |
| Program Erase Cycle                       | X        |         | Low risk for<br>mission (1<br>failure out of<br>50K cyc.) |                                    | Waived<br>for<br>mission |                        |
| 1000 hr Uncycled High Temperature Storage | X        |         |                                                           |                                    |                          | Accept (0/180)         |
| Endurance                                 |          | unknown |                                                           |                                    |                          |                        |
| Data Retention                            |          | Unknown |                                                           |                                    |                          |                        |

Critical review of vendors own data can uncover potential reliability concerns.

### **COTS Part Construction Analysis Data**

|                       |             |            | J / \.     | <u> </u>                |           |            |         |
|-----------------------|-------------|------------|------------|-------------------------|-----------|------------|---------|
| Manufacturer          | Part No.    | Date Code  | LOG No.    | Package                 | Completed | Results    | Work by |
| Linear Technology     | LT1076CT    | 9524       | 6746       | 5 LD TO-220             | 10/3/96   | Accepted   | JPL     |
| Linear Technology     | LT111721N8  | 9530       | 6747       | 8 LD DIP                | 10/3/96   | Accepted   | JPL     |
| Linear Technology     | LT1176CN8   | 9512       | 6748       | 8 LD DIP                | 10/3/96   | Accepted   | JPL     |
| Linear Technology     | LT111 1 CN8 | 9330/9543  | 6749       | 8 LD <b>DIP</b>         | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LT1352CN8   | 9613       | 6750       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LT1211 CN8  | 9625       | 6751       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LT1243IN8   | 9338C      | 6752       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LT1373CN8   | 9532       | 6753       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LTC1257IN8  | 9440/9521  | 6754       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| Linear Technology     | LTC1047CN8  | 9537       | 6755       | 8 LD DIP                | 10/8/96   | Accepted   | JPL     |
| INTEL CORP.           | DA28F016SV  | N/A        | 6745       | 56 LD SSOP              | 10/1 7/96 | Accepted   | JPL     |
| INTEL CORP.           | DA28F016SV  | N/A        | 961 4082D1 | 56 LD SSOP              | 10/1 7/96 | Accepted   | DPA     |
| CATALYST              | CAT28F020P  | 09550B     | 9614082D2  | 32 LD DIP               | 10/15/96  | Accepted   | DPA     |
| AMD                   | AM28F020    | 9608/961 8 | 961 4082D3 | 32 LD DIP               | 10/1 5/96 | Accepted   | DPA     |
| Linear Technology     | LTC141 9CS  | 9624       | 6756       | 28 LD P. SOIC           | 10/8/96   | Accepted   | JPL     |
| Vendor A              | 2N2605      | None       | 6848       | TO-46                   | 2/1 7197  | High Risk  | JPL     |
| Analog Devices (AU)   | AD768AR     | 9633       | 6856       | 28 LD P. S. M.          | 3/14/97   | Accepted   | JPL     |
| GEC Plessy            | NJ88C33     | 9617       | 6878       | <b>14</b> LD <b>DIP</b> | 5/1/97    | Accepted   | JPL     |
| Nat ional Sem.        | LMX2332L    | None       | 6873       | <b>20</b> LD P. S. M.   | 4/30/97   | Accepted   | JPL     |
| National Semi.        | LMX2315     | None       | 6872       | <b>20</b> LD P. S. M.   | 4/30/97   | Accepted   | JPL     |
| Vendor B              | ADS-937     | 9623/964\$ | 6773       | 32 LD SB                | 5/1/97    | Failed DPA | JPL     |
| Signal Process. Tech. | SPT7725AIQ  | 9552       | 6855       | 44 LD Cq S. M.          | 3/14/97   | Accepted   | JPL     |
| Maxim                 | MAX101 CFR  | 9436       | 6854       | 84 LD C. FP             | 3/11/97   | Accepted   | JPL     |





### Plastic Packages Outgassing Data

| Material                              | MCR               |                | 761 2382FBA, E24,<br>)A28F016SV, K8055, U6240332 |                    | AM28F020-150PC, 961 8FBB   |      |                   | CSI,CAT28F020F,1 -1509550E |      |      |
|---------------------------------------|-------------------|----------------|--------------------------------------------------|--------------------|----------------------------|------|-------------------|----------------------------|------|------|
| Parl                                  | Motorola SCF?     |                | Intel 16 M Flash Memory                          |                    | AMD 2M <b>Flash Memory</b> |      |                   | Catalyst 2M Flash Memory   |      |      |
| Sample No.                            | 5                 | 6 <sub>I</sub> | 7                                                | 1 8 <sub>1</sub> a | 9                          | 10   |                   | 11                         | 24   |      |
| WT. Loss "/o                          | 0.45              | 0.46 0.45      | 0.23                                             | 0.22 0.22          | 0.41                       | 0.45 | 0.43              | 0.40                       | 0.41 | 0.40 |
| Water <b>Vapor</b><br>Recovered, WVR, | 0.28              | 0.25 0.26      | 0.14                                             | 0.11 0.12          | 0.19                       | 0.17 | 0.18              | 0.21                       | 0.18 | 0.19 |
| %TML (WT, LOSS-<br>WVR) %             | 0.17              | 0.21 0.19      | 0.09                                             | 0.11   0.10        | 0.22                       | 0.28 | 0.25              | 0.19                       | 0.23 | 0.21 |
| CVCM %                                | 0.04              | 0.08 0.06      | 0.02                                             | 0.01 0.01          | 0.03                       | 0.05 | 0.04              | 0.04                       | 0.04 | 0.04 |
| DEPOSIT on CP                         | Opaque            |                | Negligible                                       |                    | Opaque                     |      | Opaque            |                            |      |      |
| FTIR Results                          | Amine cured epoxy |                | Anhydride cured epoxy                            |                    | Amine cured epoxy          |      | Amine cured epoxy |                            |      |      |

Conclusion: <u>All materials passed</u>. These tests are suited for lot-to-lot comparisons, tracking manufacturing continuity/changes, and measuring absorbed moisture at a known environment.



### A/D COTS Radiation Data

| PIN      | Resolution | Process | VDD    | Power  | Speed           | <b>Total Dose</b> | SEL                         |
|----------|------------|---------|--------|--------|-----------------|-------------------|-----------------------------|
| LTC1419  | 14-Bit     | CMOS    | +/- 5V | 150 mW | 800 Ksps        | TBD               | Nine, LET>100<br>MeV/mg/cm2 |
| SPT7725  | 8-Bit      | Bipolar | - 5.2V | 2.2 w  | 300 Msps        | >100 Krad (Si)    | None, LET>100<br>MeV/mg/cm2 |
| HI 1276  | 8-Bit      | Bipolar | - 5.2V | 2.8 W  | <b>500</b> Msps | TBD               | None, LET>100<br>Mev/mg/cm2 |
| AD7714-3 | 24-Bit     | CMOS    | + 3V   | 2.6 mW | See data sheet  | TBD               | LET = 55<br>Mev/mg/cm2      |
| ADS7809  | 16-Bit     | CMOS    | + 5V   | 100 mW | 100 Ksps        | 10 Krad (Si)      | LET= 19.9<br>MeV/mg/cm2     |

Each part must be evaluated on its own merit & per mission requirements before acceptance



### Validation of C-SAM Results Obtained on 3 PEMs

### Found by C-SAM

Cross Section Found

A. Voids Near Pins (3)

**A.** Mylar Tape and Small Bubbles (3/3)

B. Voids at Lead Egress(1)

B. Very Thin Package Material (1/1)

C. Voids at die edge (3/3) C. Nothing (1)

D. Die Attach 90% Voided(1) D. No Die to Frame Adhesion (1/1)

Correlation thus far on 3 parts = 5/6

### Note:

All voids (delamination) indicated as red by C-SAM analysis are being validated.



### Case Study - COTS Experience

Mars Pathfinder used a COTS hybrid converter because of cost & schedule constraints. They ordered to a military temperature range from a non-QML supplier. Early samples showed problems which were <u>aggressively worked</u> with the vendor. New builds were better and performed well.

Some subsequent JPL projects ordered converters from the same vendor without the same rigorous follow-up, we found:

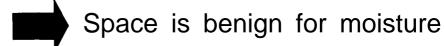
**Corrective actions from Mars Pathfinder did not persist** 

11/1 3 DPA samples from different lots were rejected

JPL source inspection led to many rejects (1 9/20 lots)

8 operational failures in hardware

Extensive effort required to solve the problems proved very expensive


Lesson: Successful COTS infusion requires great diligence.



# Concerns with **Using**COTS / PEMs in Space

- Long Term Storage
- **PEM** Assembly Defects
- Moisture Absorption
- Reliability Unknown
- Rad Tolerance Unknown
- Outgassing in Space
- Glass Transition Temp.

### Findings/Resolution





Use Proper Handling for Moisture Sensitive Parts
Use COTS Methodology

COTS Must Be Tested

0 Rejects to NASA Speci

Space Applications<<Tg



### **Conclusions Thus Far:**

- •Using COTS without understanding their performance can lead to mission delay, increased cost, or worst Mission Failure
- JPL is using the described methodology to minimize the reliability/radiation risk of using COTS
- •Our studies/experiences of COTS concerns thus far, have not exclusively disqualified them for Space, but rather confirmed they must be selectively and carefully evaluated case by case
- Thorough characterization can lead to successful applications
- A COTS methodology/evaluation should be part of an integral system risk reduction program